
APPENDIX E

Answers to Questfons in the Exercises

CHAPTER 2

Ex. 2.1. Retrieval and Generalization

Q.2.1.1. Some of Ken's properties are more strongly activated than others
because several instance units other than the instance unit for
Ken are partially active. These instance units send activation to
their property units. In particular, the units for Nick and Neal are
both reasonably active. They are active because they share Single,
Sharks, and HS with Ken; they in turn support these properties of
Ken, reinforcing their activation relative to others.

Q.2.1.2. The instance units for some of the individuals eventually receive
considerable excitation because they are supported by several of
the active property units. In contrast, the name units for these
same individuals only receive excitation from one source-that is,
the corresponding instance unit. The inhibition coming from
Ken's name unit is stronger than the excitation any of the other
name units is receiving.

Q.2.1.3. All of the active instance units have three properties in common
with Ken. However, the six active instance nodes differ in the
extent to which their properties are shared by the other active
instance units. Nick and Neal share Sharks, HS, and Single with

290 CHAPTER 2

Ken, whereas Earl and Rick share Sharks, HS, and Burglar, and
Pete and Fred share in20s, HS, and Single. All the properties Nick
and Neal share with Ken are also shared with two of the others,
whereas Earl and Rick are the only individuals who share Burglar
with Ken, and Pete and Fred are the only ones who share in20s
with Ken. Because the properties that most of this group share
receive more top-down support, the individuals who share them
get more bottom-up activation. This effect is known as the "gang
effect" (McClelland & Rumelhart, 1981) and is discussed again in
Chapter 7.

Q.2.1.4. This is a result of hysteresis. The in20s unit became active as a
result of the activation of the instance unit for Ken. At the same
time other property units became active and these eventually
began to activate other instance units, which in turn sent excita­
tion to the in30s unit. By this point, however, the in20s unit was
already active, so it continues to send inhibition to the in30s unit,
keeping it from becoming as active as it would otherwise tend to
become.

Q.2.1.5. Among the instance units, only four "competitors" of Ken are
active; these are the ones that match one of the two properties of
the probe and that share the HS and Single properties with Ken.
Even though Earl and Rick share three properties with Ken, they
are not active in this case. Among the property units, the proper­
ties shared by all the active instance units are more active than
before, whereas the Burglar unit is less active; the other occupa­
tion units are now above threshold.

Q.2.1.6. In part because the probe directly excites them and in part
because they agree on two out of the three properties they share
with Ken, the instance units for Pete, Fred, Nick, and Neal are all
quite active in this case. Since two of these support Pusher and
two support Bookie, these two units receive more activation than
in the previous run. Also, since in the first run the instance unit
for Ken was the only instance unit active for some time, the Bur­
glar unit was able to establish itself more strongly in the early
cycles, thereby helping to keep the other property units from
exceeding threshold.

Q.2.1.7. The noisy version of Ken "works" in this case because the probe
is still closer to Ken than to any other instance known to the sys­
tem. In other cases, distorting one property does not work
because sometimes it produces a probe that is an equally good
match to two or more instances, and sometimes it even produces

APPENDIX E. ANSWERS TO QUESTIONS IN THE EXERCISES 291

a probe that is a perfect match to a different individual from the
one that matched the undistorted version of the probe.

Q.2.1.8. Success is due to the fact that several instance units that share
several of Lance's properties also happen to share the same occu­
pation. The model generalizes on the basis of similarity, and in
this instance it happens to be right. Activation of the Divorced
unit comes about because two of the instances that are similar to
Lance are divorced, rather than married. Guilt by association.

Q.2.1.9. We leave this question to you.

Ex. 2.2. Effects of Changes in Parameter Values

Q.2.2.1. The effect of decreasing these four parameters is simply to slow
processing by a factor of 2; it is as if time runs more slowly. One
can easily show that the equilibrium activations of units should
not be affected by proportional increases in all these parameters
since they can be factored out of both the numerator and denomi­
nator of Equation 2 (p. 13). The effect of increasing these four
parameters, however, is not so simple because it introduces
abrupt transitions in the activations of units. Basically, what hap­
pens is that a large number of units (for example, at the instance
level) suddenly receive enough bottom-up activation to become
active. Since none were active before, they were not receiving
any inhibition at this point. When they all suddenly become
active, however, they all start sending each other inhibition. This
causes them all to be shut off on the next cycle, even though all
are still receiving bottom-up excitatory input. Since they are all
off at this point there is no inhibition, so on the next cycle they
all come on. This "ringing" effect eventually sets up an oscilla­
tory pattern that destroys the information content of the pattern
of activation.

Q.2.2.2. Increases in gamma limit activation of partially matching instances
and also limit activation of partially supported properties. The
result is a more precise and focused retrieval of the best match to
the probe, with less influence from partial matches. In extreme
cases this completely eliminates, for example, the "default assign­
ment" process seen previously in the Lance example. Decreases
in gamma allow more activation of partial matches; in the limit,
these partial matches can swamp the best match, destroying the
information content of the pattern of activation.

292 CHAPTER 3

Ex. 2.3. Grossberg Variations

Q.2.3.1. The main point here is that in the standard update rule, the net
input to the unit is computed regardless of the current activation
of the unit; when the net input is positive it drives the activation
of the unit up, and when it is negative it drives the activation of
the unit down. In the Grossberg version, the net input is not
computed as such; the magnitude of the upward force on the
unit's activation (that is, the effect of the excitatory input) is
scaled by the distance from the current activation to the max­
imum, while the effect of inhibitory input is scaled by the dis­
tance from the current activation to the minimum. In this regard
it is useful to contrast the effect of equal excitatory and inhibitory
input in the two cases. In the standard case, these· cancel each
other and so there is no change in the activation of the unit. In
the Grossberg case, the effects are modulated by the current
activation of the unit; the effects balance only when the activation
is halfway between the maximum and minimum activations. In
these simulations this means that the effects will balance at an
activation of 0.4, halfway between 1.0 and -0.2. To compensate,
one can increase gamma. For example, if gamma were set to 5
times alpha, then equal excitation and inhibition would have can­
celing effects when the unit's activation was exactly O. Selecting
such a value for gamma brings the two versions closer into line.
However, this tends to result in lower overall activations, since as
units become excited above 0, the power of their inhibitory inputs
becomes much more potent.

One advantage of the Grossberg version is that it is in fact
more stable; in general it appears that the standard version drifts
away from the approximate equilibria we see at around 100 cycles.
In contrast, the Grossberg version tends to find very stable fixed
points.

CHAPTER 3

Ex. 3.1. The Necker Cube

Q.3 .1.1. You should find that each of the two valid interpretations is
reached about a third of the time, and local maxima are found on
the other third. Of these, you should find some in which one
side of cube A is on and the opposite side of cube B is on, and

APPENDIX E. ANSWERS TO QUESTIONS IN THE EXERCISES 293

some in which one edge of one of the cubes is on and the other
three edges of the other cube are on.

Q.3.1.2. Generally, what happens is that local minima are reached when
the first few units updated are on edges of the two cubes that do
not interact. For example, in one minimum, the units on the
right surface of cube A are on, together with those on the left
surface of cube B. This minimum tends to be reached if units on
these two surfaces become active early on. Note that units on
these surfaces do not directly inhibit each other, but do inhibit
other units in the other's cube. These inhibitory influences
prevent either cube from completing itself. In one particular run,
of the first four units updated, two were on the left surface of
cube A and two were on the right surface of cube B. Four of the
next five updates were on these two surfaces. At this point, the
bottom-right edge has little activity in either cube, and could still
go either way. From this point on, many of the units are being
strongly enough inhibited by the activations that have been esta­
blished that they do not get a chance to come on. Only the units
in the two bottom-right edges remain in a situation where they
would come on if updated. By chance, one of the units in the
bottom right edge of cube A is updated before one of the units in
the bottom right edge of cube B. This has the effect of making
the input to units in the bottom right edge of cube B inhibitory,
thereby determining the solution.

Q.3.1.3. Generally, the larger the value of istr, the lower the probability of
finding one of the two global minima. There are two related rea­
sons. First, units become active more quickly with larger values
of istr; second, active units exert stronger effects on other units.
This means that within a very small number of updates, activa­
tions can be set up in each of the two cubes that effectively block
completion of the other cube. With smaller values of istr, activa­
tion is more gradual, and these kinds of blockage effects are less
likely.

Q.3. 1.4. Providing external input has an effect, but it is not completely
overwhelming, for example, providing external input of strength
1.0 biases the outcome, but only slightly. In one set of 40 runs,
with Ajll receiving external input of 1.0, 15 runs settled to cube A
and 15 settled to cube B. The bias toward cube A was only
apparent in the mixed solutions. There were five runs with six
units on from A, four with four units on from both A and B, and
only one with six units on from B. Note that the external input is
multiplied by the parameter estr, which means that external input
of 1.0 only contributes 0.4 to the net input. If you turn on two

294 CHAPTER 3

units in the same cube, there is a much more consistent shift
toward outcomes favoring that cube. In one set of 40 runs, with
Ajll and Abur receiving external input of 1.0, 30 runs settled to
cube A, and only 2 settled to cube B.

Ex. 3.2. Schemata for Rooms

Q.3.2.1. Somewhat surprisingly, the system tends to settle to almost
exactly the same goodness maxima on different runs with the
same unit or units clamped. Note that these maxima are not
necessarily global maxima. For example, in the bathroom case,
the maximum the network finds has window and drapes off; if
they are on (and all else is the same) the goodness is greater. In
all but one case, the maxima you should reach correspond to
those shown on in Figure 6 in PDP:14 (pp. 26-27); the only
discrepancy is the case of the living room where the unit clamped
on initially is sofa. The state illustrated in PDP:14 tends to be
reached around cycle 25, with a goodness of about 21.5; but
sometime between cycle 25 and cycle 50, the network breaks out
of this state and moves toward a higher maximum, with a good­
ness of very close to 27.0 (it may take a total of 75 cycles or so to
converge to this point). This maximum seems to be a luxurious
office or a living room with a study area in it.

Differences in the maxima reached are attributable to several
factors, the most obvious of which is the number of units that are
on. Thus the bathroom prototype, in which only nine units are
on, has a goodness of only about 8.08, while the living room pro­
totype, in which 21 units are on, has a goodness of about 27.
Another factor, of course, is the pattern of the weights; these
determine how much each active unit contributes to the overall
goodness. We will leave it to you to discover the effects of
clamping various single units and pairs of units.

Q.3.2.2. You will find that the office case gives the clearest example of a
situation in which it is better to have both drapes or windows than
it is to have either without the other. The bathroom prototype
shows this same effect but much more weakly, and in the bed­
room and the living room cases, the effect disappears; here hav­
ing neither is worse than having either, and having both is by far
the best. What is happening is that drapes and windows each have
net positive input from other features of bedrooms and living
rooms, so each contributes positively to the goodness, indepen­
dently of the other. The cases in which the synergy appears are
cases in which each separately gets net negative input from other

APPENDIX E. ANSWERS TO QUESTIONS IN THE EXERCISES 295

features that are active, but when the other is active, the balance
shifts. You might also notice that drapes without windows gen­
erally seems worse than windows without drapes. Can you figure
out why? Remember, connections are symmetrical in the schema
model!

Ex. 3.5. Simulated Annealing in the Cube-Example

Q.3.5.1. You should find a lower density of local maxima-our experience
is that they occur only about 10% to 20% of the time. Also,
interestingly, only local maxima in which four units are on in each
cube seem to "last." That is, the system tends to move away from
maxima in which six units are on in one cube and two are on in
the other, even at the minimum temperature of 0.5. What would
happen if the minimum temperature were reduced-would that
have any effect on this tendency?

Q.3.5.2. Initial temperature is pretty much irrelevant in this case unless it
is Quite low. More important is the gradualness of the annealing.
If it is abrupt, there is a very fast transition from approximately
random behavior to virtually deterministic behavior; the results in
this case (in their most extreme form) approximate the Hopfield
net. With slow enough annealing, the network is guaranteed to
settle to one of the highest goodness states.

Ex. 3.6. Electricity Problem Solving

Q.3.6.1. Although tne network occasionally seems to be stuck in a local
maximum at 200 cycles, given the annealing schedule imposed in
the vir.sfr file, our experience is that it will almost always eventu­
ally find the best answer if run for 300 or even 400 cycles. In this
answer the following knowledge atoms are active:

VI + V2 = VT: d-u-s
RI + R2 = RT: s-u-u
I· RI = VI: d-s-d
I • R2 = V2: d-u-u
I· RT = VT: d-u-u

Other knowledge atoms will occasionally flicker on in this state,
and occasionally the active ones will flicker off, but most of the
time all of the active ones are on, along with one or two others.

296 CHAPTER 4

Q.3.6.2. Yes, you can replicate Smolensky's findings, but the model is sto­
chastic, so you may have to average over a number of runs to get
reliable results. In general it is not possible to go by the results of
one or two runs in these stochastic systems to reach your conclu­
sions.

Q.3.6.3. In general, the network tends to settle first on parts of the answer
that most directly depend on the units that have been clamped in
the problem specification. Other parts of the answer that depend
on these results cannot become firmly established until the con­
clusions that they depend on are themselves firmly established.

CHAPTER 4

Ex. 4.1. Generalization and Similarity With Hebbian Learning

QA.l.l. Each row of the weight matrix is a copy of the input pattern,
scaled by the learning rate (0.125), and multiplied by the activa­
tion of the corresponding output unit, which is 1 or -1. Row 1,
then, is just the input pattern times 0.125 since the corresponding
output unit has activation 1. Row 2 is just the input pattern times
-0.125 since the corresponding output unit has activation -1.

The columns of the weight matrix can be understood in a simi­
lar way. That is, each column is a copy of the output pattern,
scaled by the learning rate, and multiplied by the activation of the
corresponding input unit. Note that these facts follow directly
from the Hebb rule, which states that the weight in row i, column
j is equal to the activation of input unitj times output unit i times
the learning rate.

QA.1.2. When a single association has been stored in a pattern associator,
the output of the network is always a scalar multiple of the stored
output pattern. The value of that scalar is equal to the normalized
dot product of the test input with the stored input pattern. Thus,
even when the test input seems very different from the stored
input pattern, as long as the normalized dot product of the two is
positive, the obtained output will simply be a scaled-down version
of the stored output pattern. For example, the test input pattern

+++++-++

has a normalized dot product of 0.25 with the stored input pattern

+-+-+-++

APPENDIX E. ANSWERS TO QUESTIONS IN THE EXERCISES 297

The output obtained with this test pattern is 0.25 times the stored
output pattern. Thus the ndp of the test output with the stored
output is 0.25, and the nv/ of the obtained output pattern is also
0.25. The vcor of the test output with the stored output is 1.0,
indicating that the vectors are identical up to a scalar multiple.

A special case of this arises when the test input is orthogonal to
the stored input pattern. In this case, the normalized dot product
of the test input with the stored input is 0, so the test output vec­
tor is 0 times the stored output vector; that is, it is a vector of Os.
When the test input is anticorrelated with the stored input, their
normalized dot product is negative. When the stored and test
inputs are perfectly anticorrelated, their normalized dot product
will be -1.0, so the test output will be -1.0 times the stored out­
put. Note in this case that the magnitude of the output (the nvl)

is just as great as it is when the test input pattern is the same as
the stored input pattern.

One useful way of thinking of what is going on in these tests is
to note that the output vector can be thought of as a weighted
sum of the columns of the weight matrix, where the weights asso­
ciated with each column are determined by the activations of the
corresponding input units. Each of these column vectors is sim­
ply equal to 0.125 times the output pattern times the sign the
corresponding input unit had in the stored input pattern. When
the test input pattern matches the stored pattern, what we end up
with is the sum of eight column vectors, each equal to 0.125
times the stored output pattern. The result is 1.0 times the stored
output pattern. Different input patterns simply weight the
columns differently, but the result is always some scalar multiple
of the basic output pattern column vector.

Ex. 4.2. Orthogonality, Linear Separability, and Learning

QA.2.1. Your orthogonal set of vectors will be perfectly learned by the net
in the first epoch of training, so that during test, t',~ ndp, nv/, and
vcor are all 1.0. In vector terms, each test input produces an out­
put pattern that is equal to the sum of the three stored output pat­
terns, each weighted by the normalized dot product of the test
input with corresponding stored input patterns. Since the input
vectors form a mutually orthogonal set, input pattern k produces
an output that is 1.0 times the corresponding output pattern k,
plus 0.0 times each of the other output patterns. Additional
epochs of training increase the strengths of the connection
weights. One can think of this as a matter of increasing the
number of copies of each association that are stored in the net.

298 CHAPTER 4

Each copy contributes to the output. The result is that the ndp
and nvl grow linearly, even though the vcor stays the same.

For the set of vectors that are not orthogonal, you should find
that learning is not perfect. Instead, the output pattern produced
by each test pattern will be "contaminated" by the other output
patterns. The degree of contamination will depend on the similar­
ity relations among the input patterns, as given by their normal­
ized dot product, because the output produced by a test pattern is
the sum of the outputs produced by each learned input pattern,
each weighted by the normalized dot product of the learned input
pattern with the test input pattern. Repeated training epochs will
not change this. Though the magnitudes of the output vectors
will grow with each training epoch, the tall command will show
the same degree of contamination by other output patterns, as
measured by the vcor variable.

Q.4.2.2. When the delta rule is used, the results in the first epoch for the
orthogonal patterns are the same as with the Hebb rule.
Thereafter, however, no further learning occurs because the
learning that occurred in the first epoch reduced the error terms
to 0 for all output units. For the linearly independent patterns,
the benefit of the delta rule becomes clear: the vcor, ndp, and nvl
measures will all eventually converge to 1.0. You will note that
the last pattern pair in the training list always produces perfect
results when you do a tall. This is because, given the value of the
Irate parameter, the error for the current pattern is always com­
pletely reduced to O. Because the changes that produce this effect
generally interfere with previous patterns, however, the results
are not so good for earlier patterns on the list. If you watch the
vcor and ndp during training, you will note that they stay less than
1.0 for all of the patterns-unless, of course, the pattern set you
are using contains a pattern that is orthogonal to both of the oth­
ers in the set. The values gradually come closer to 1.0 as the
changes to the weights get smaller and smaller.

Q.4.2.3. As we saw at the beginning of the chapter, each weight in the
Hebb rule is proportional to the correlation between the
corresponding input and output units over the set of patterns.
You can retrieve these correlations by dividing each weight by the
learning rate times the number of pattern pairs stored. In this
instance, given that there are three patterns in the training set,
each weight has a value of 0.375, 0.125, -0.125, or -0.125,
corresponding to correlations of 1.0, 0.33, -0.33 and -1.0. With
the delta rule, the weights will tend to preserve the same sign,
although they do not have to. The magnitudes will not in general
be the same. Basically, the way to think about what is happening
is this. The magnitudes of the weights in each row adjust to

APPENDIX E. ANSWERS TO QUESTIONS IN THE EXERCISES 299

predict the output unit's activation correctly. If a particular out­
put unit is perfectly correlated with only one of the input units
over the ensemble of patterns, the corresponding weight will grow
quite large. On the other hand, if a particular output unit is per­
fectly correlated with a number of the input units, they will come
to "share the weight." In the patterns in the /i.pat file, two units
are perfectly correlated with output unit 0 and one is perfectly
anticorrelated. These develop weights of +0.29 and -0.29,
respectively; these weights actually ani smaller than they would be
in the Hebbian case. On the other hand, output unit 2 correlates
perfectly with only one input unit (input unit 6, the next-to-last
one) in these patterns. (Actually, the two units are anticorre­
lated, but that is equivalent to perfect correlation except a sign
change, since one is perfectly predictable from the other.) Thus
the weight to unit 2 from unit 6 must be much larger (-0.67)
because it cannot share the burden of predicting output unit 2's
activation with other input units.

QA.2.4. The orthogonal pattern is mastered first because the output it pro­
duces is not contaminated by any of the other output patterns.

Q.4.2.5. With Hebbian learning, nothing but correlations, scaled by the
number of training trials, get stored in the weights. With the
delta rule and Irate set at 0.125, the weights oscillate back and
forth, falling into a pattern that suffices for each pattern pair in
turn, but does not work for some or all of the others. If the
learning rate is set to a smaller value, say 0.0125 rather than
0.125, the oscillations are smaller. The weights will average out
to values that minimize the total sum of squares.

Ex. 4.3. Learning Central Tendencies

QA.3.1. Basically, what happens is that the expected value of each weight
converges to the value that it achieved with noiseless patterns in
one epoch of training. The higher the learning rate, the sooner
the expected value converges, but the more variability there is
around this expected value as a result of each new learning trial.
Smaller learning rates lead to slower convergence but greater
fidelity to the central tendency.

Ex. 4.4. Lawful Behavior

QAA.1. In the particular run that we did, the weights at the end of 10
epochs were:

300 CHAPTER 4

36-28-16 0 -4 -4 -6 -2
-22 38-24 -2 0 -6 -6 -2
-26-22 38 0 0-10 -6 -4
-2 -8 0 38-24-24 -6 -4
-8-12 0-34 38-24 -6-14
-8 -2 -4-22-26 34 -4-10

o -2 -4 0 -4 -2-40 34
-4 4 0 4 -4 0 38-38

Given these values, the pattern

1 001 0 0 1 0

would produce a net input of 38 to the last output unit, and

1 0 0 1 000 1

would produce a net input of -38. Passing these values through
the logistic function with temperature 15 produces a probability of
.926 that the last output unit will come on in the first instance
and a probability of .074 that it will come on in the second
instance.

Q.4.4.2. A third of the time each input unit in each of the first two sub­
groups is on, a particular unit in each of the other subgroups
should go on in the output. The other two-thirds of the time the
other output unit should go off. Thus, the weights between input
units in one of these subgroups and output units in the other tend
to be decremented more often than they are incremented, and
that is why the weights from units in the first subgroup (units
1-3) to units in the second subgroup (units 4-6) are negative.
Each of the two output units in the 7-8 group, however, is on
exactly half of the time each of the input units in the other two
groups is on. Thus these weights tend to be incremented as often
as they are decremented.

Q.4.4.3. The most probable response to 147 at this point will be 148,
although the tendency to make this response will generally be
weaker than the tendency to make response 258 to 257. The
weights from units 1 and 4 to unit 7 should be tending to oppose
the strong negative weight from input unit 7 to output unit 7.
However, this tendency should not be very strong at this point.
The weights that were previously involved in producing 147 from
147 have virtually disappeared. This can be seen by comparing
the case in which the weights were not reset before training with
the al/.pat set to another run in which the weights were reset
before training with the al/.pat set. The resulting weight matrices

APPENDIX E. ANSWERS TO QUESTIONS IN THE EXERCISES 301

are virtually identical, except for random perturbations due to
nOise.

Q.4.4.4. It takes so long to get to this point for four reasons. First, the
exceptional pattern, 147, which is the hardest to master, only
occurs once per epoch. Second, as the error rate goes down, the
number of times the weights get changed also goes down because
weight changes only occur when there are errors. Third, several
other input patterns (particularly 247, 347, 157, and 167) tend to
work against 147. Finally, as the weights get bigger, each change
in the weights has a decreasing effect on performance because of
the nonlinearity of the logistic function.

CHAPTER 5

Ex. 5.1. The XOR Problem

Q.5.1.1. The value of error for a hidden unit is the sum of the delta terms
for each of the units the hidden unit projects to, with each delta
term weighted by the value of the weight from the hidden unit to
the output unit. The error for unit 2 (the first hidden unit) is
therefore

-0.146 x 0.27 = -0.039.

The delta for a unit is just its error times the derivative of the
activation of the unit with respect to its net input, or the activa­
tion of the unit times one minus the activation. Thus the delta
term for unit 2 is

-0.039 x 0.64 x (1- 0.64) = -0.009.

For unit 3, the error is

-0.146 xO.08=-0.0117,

and the delta term is

-0.0117 x 0.40 x (1- 0.40) = 0.0028.

The values are small in part because the weights from the hidden
units to the output units are small. They are also affected by the
fact that the error is multiplied by the derivative of the activation
function with respect to the net input to the unit, first for the out­
put unit, in computing its delta, then again for the hidden units,
in computing their deltas from the deltas of the output units.

302 CHAPTER 5

Each time the error derivative is "passed through" the derivative
of the activation function, it is attenuated by at least a factor of 4,
since for activations between 0 and 1, the maximum value of
activation 0- ac~ivation) is 0.25. The deltas for the hidden units
have been subjected to this factor twice.

Q.5.1.2. The network produces an output of 0.60 for input pattern 0 and
0.61 for the rest of the patterns. The results are so similar
because the small random starting weights have the effect of mak­
ing the net input to each hidden unit vary in a rather narrow
range (from -0.27 to 0.60 for unit 2 and from -0.44 to -0.36 for
unit 3) across the four different patterns. The logistic function
squashes these variations considerably since the slope of this
function is only 0.25 at its steepest. Thus the activation of unit 2
only ranges from 0.43 to 0.64, while that of unit 3 stays very close
to 0.40. This attenuation process repeats itself in the computation
of the activation of the output unit from the activations of the
hidden units.

Q.5.1.3. The bias term of the output unit and the weights from the hidden
units to the output unit all got smaller. There were slight changes
to the weights from the input units to the hidden units and in the
bias terms for the hidden units but these are less important. Basi­
cally, what is happening is that the network has reduced the tss
somewhat by making each pattern produce an output quite close
to 0.50 rather than 0.62. The network achieved this by reducing
the weights to the output unit and by reducing its bias term. Note
that if the output were exactly 0.50 for each pattern, the tss would
be 1.0. The deltas for the hidden units have gotten even smaller
because of the smaller values of the weights from these units to
the output unit. Since the gradient depends on these delta terms,
we can expect learning to proceed very slowly over the next few
epochs.

Q.5.1.4. The more responsive hidden unit, unit 2, will continue to change
its incoming weights more rapidly than unit 3, in part because its
delta is quite a bit larger due to the larger weight from this unit to
the output unit. Another factor hindering progress in changing
the weights associated with unit 3 is the fact that the weight error
derivatives for weights both coming into and going out of this
unit cancel each other out over the four patterns.

Q.5.1.5. Unit 2 is acting like an OR unit because it has fairly strong posi­
tive weights from each input unit, together with a bias near O.
When neither input is on, its activation is close to 0.5. When
either unit comes· on, its activation approaches 1.0. The other

APPENDIX E. ANSWERS TO QUESTIONS IN THE EXERCISES 303

hidden unit remains rather unresponsive, since the weights from
the input units to this unit are very small. It is beginning to
develop a negative weight to the output unit. Though it is not
doing this very strongly, we can see that it is beginning to serve as
a unit that inhibits the output unit in proportion to the number of
active input units.

Q.5.1.6. Unit 3 is now in a linear range, allowing its activation to reflect
the number of active input units. Because it is developing a
strong negative weight to the output unit, the effect is to more
and more strongly inhibit the output unit as the number of active
input units increases. The other hidden unit no longer differen­
tiates between one and two input units on, since its large positive
weights from the input units cause its activation to be pushed
against 1.0 whenever any of the input units are on. Thus the
inhibition of the output unit by unit 3 increases as the number of
active input units increases from one to two, and the excitation of
the output unit by unit 2 does not increase.

Q.5.1.7. At epoch 240, the tss is mostly due to the fact that the network is
treating all of the patterns with one or more hidden units on as
roughly equivalent. All three patterns are producing activations
greater than 0.5. The pattern in which both input units are on
(pattern 3) is producing a larger pss than the other two of these
patterns-it is exerting a powerful effect. In more detail, the
weight from unit 3 to the output unit is pushed to be more posi­
tive in the two cases in which one input unit is on but is pushed
to be more negative when both input units are on. The effects
almost cancel but are slightly negative because the activation of
unit 3 is larger when both input units are on and the delta for the
output unit is larger. Meanwhile, unit 3's delta is negative in each
of the two cases where one input unit is on and is positive when
both input units are on. These almost cancel in their effects on
the weight error derivatives for the weights from the input units
to unit 3, but again the delta term for the pattern in which both
input units are on dominates. (Remember that each input unit is
on in only one of the two patterns in which only one input unit is
on.) Thus the net force on the weight from each input unit to
unit 3 is positive. As the weight from unit 3 to the output unit
gets larger, delta for unit 3 gets larger, so the changes in the
weights coming into unit 3 get larger and larger.

Q.5.1.8. One could almost write a book about the process of solving XOR,
but the following captures most of the main things that happen.
Initially, the network reduces the weights from each hidden unit
to the output unit and reduces the bias term of the output unit.

304 CHAPTER 5

This reduces the tss to very close to 1.0. At this point, learning
slows to a near standstill because the weight error derivatives are
quite small. Gradually, however, the hidden unit that is slightly
more responsive to the input (unit 2) comes to act as an OR unit.
During this phase the total sum of squares is being reduced
because the network is moving toward a state in which the output
is 0 for the (0 0) input pattern and is 0.67 for the other three pat­
terns. (If it actually reached this point the tss would be 0.67.) At
this point, the other hidden unit begins to come into play. The
forces on this unit cause its input weights to increase and its
weight to the output unit to decrease. It comes to inhibit the out­
put unit if both input units are on, thereby overriding the effects
of the other hidden unit in just this case.

There is a long phase during learning in which the weight error
derivatives are very small, in part because the weights from the
hidden units to the output units are small and in part because the
hidden units are not very differentiated in their responses and so
components of the the weight error derivatives contributed by
each of the four patterns nearly cancel each other out. However,
between epoch 140 and epoch 220 or so, the gradient seems to be
pretty much in the same direction, as indicated by the gear mea­
sure. Learning can be speeded considerably if the Irate is
increased during this period. In fact with the particular set of
starting weights in the xor.str file, learning can be speeded consid­
erably by setting Irate to a much larger value from the beginning.
In general, though, high values of Irate throughout can lead to
local minima.

Ex. 5.4. A Cascaded XOR Network

Q.5.4.1. In cascade mode, the net input to each hidden unit and to the
output unit builds up gradually over processing cycles. At first,
the net input to all these units is strongly negative because of the
negative bias terms that determine the resting levels of these
units. When only one input unit it turned on, at first it produces
a weaker input to each hidden unit than is produced when both
input units are on. This means that unit 2 comes on more quickly
when both input units are turned on than when only one is on.
Since it is unit 2 that tends to excite the output unit, the activa­
tion of the output unit builds more rapidly at first when both
input units are on. Note that early on, it makes little difference
to unit 3 whether one or both inputs are on, since this unit's bias
is so negative. Gradually, however, as processing continues, the
activation of unit 2 begins to saturate whether one or both input

APPENDIX E. ANSWERS TO QUESTIONS IN THE EXERCISES 305

units are on. During this phase, if both input units are on, unit
3's activation will grow. Because of its inhibitory connection to
the output unit, the net input to the output unit will gradually
become negative in this case.

Ex. 5.5. The Shift Register

Q.5.5.1. In our experience, the network comes up with two different solu­
tions about equally often. In one of these, the network acts as a
normal shift register. Each unit has a strong excitatory connec­
tion to the unit to its right; otherwise the connections are usually
nearly all inhibitory. In this instance, the pattern calledflrst output
is shifted one bit to the right from the pattern called input, and
the pattern called second output is shifted an additional bit to the
right. In the other solution, the network approximates what
might be called a shift-and-invert operation at each step. Thus
the first output pattern is shifted one bit right from the input pat­
tern and inverted, so that Is become Os and Os become Is. This
description holds only for the patterns in which one or two of the
input units is on, however; for the other two patterns, (no units
on or all units on) no inversion is performed. Interestingly, this
second solution seems to take longer to reach, even though the
two are found about equally often. When the constraint that the
biases be negative is removed, the shift-and-invert solution is
purer and easier to achieve, apparently at the same time making
the network slower to converge on the simple shift solution. If
the links between the weights are removed, there are a very large
number of different solutions. Interestingly, it seems to take
longer in general to solve the problem in this case. This is one of
many examples in which constraining a bp network improves its
ability to solve a particular problem.

Ex. 5.6. Plan-Dependent Sequence Generation

Q.5.6.1. The problem is very hard because the input patterns that the net
must learn to respond differentially to do not start out very dif­
ferent. As learning proceeds, they gradually differentiate. As this
occurs, the network must adjust itself to these changes. You can
compare the "copy-back" version of this problem to the case in
which the current input is supplied as part of the input by editing
the seq.pat file so that the negative integers that cause the copy
back are replaced by the values of the target from the previous
line. In this case the problem is usually solved more quickly.

306 CHAPTER 6

CHAPTER 6

Ex. 6.1. The Linear Hebbian Associator

Q.6.1.1. The receiving unit for the weight in row 3, column 0 is unit 3; the
sending unit is unit O. The values in row 3 reflect the product of
the activation of the receiving unit, 'the activations of each of the
sending units, and the Irate, which is 0.125. Since the activation
of the receiving unit (unit 3) is -1.0, row 3 is -0.125 times the
activation vector.

Q.6.1.2. The two learning patterns a and b are orthogonal to each other.
The internal input to a receiving unit is equal to the dot product
of the current activation vector with the vector of weights on the
connections to that receiving unit. This vector is equal to Irate
times pattern a times +1 or -I, depending on the particular
receiving unit in pattern a. Regardless of the sign, the dot pro­
duct of the current activation vector with the vector of weights is
o because the two patterns are orthogonal.

Q.6.1.3. The weights in row 2 are 0.125 times pattern a plus -0.125 times
pattern b. Patterns a and b differ in elements I, 2, 4, and 7; a
and -b differ in elements 0, 3, 5, and 6. Row 2 has Os in every
element where the two base patterns agree, or where ai-bi is 0.0.
In other cells of this row, the values do not cancel out; they are
either +0.25 or -0.25.

Q.6.1.4. On cycle I, the external input is applied, so that the activations of
the units at the end of this cycle reflect the external input alone.
On cycle 2, these activations, together with the weights, produce
an internal input that exactly reproduces the external input pat­
tern. These two patterns together produce the resulting activa­
tion, which is 2 times the external input in each case. These
results follow from the fact that the response to each external
input vector (that is, the internal input generated by it) is equal to
k (or nunits times Irate) times the sum of the stored vectors,
each weighted by the dot product of itself with the external input.

Q.6.1.5. Before training with the set of four patterns, the two that have
previously been learned will produce an internal input that
matches the external input, and the two new ones will produce no
internal input because they are orthogonal to the stored patterns.
After one epoch of training, the two patterns that had previously
been presented produce internal input equal to twice the external
input, and the patterns that have only been presented once

APPENDIX E. ANSWERS TO QUESTIONS IN THE EXERCISES 307

produce internal input exactly equal to the external input. Essen­
tially, each pattern in the set is an eigenvector of the network.
The eigenvalue is equal to the number of presentations times k
(or nunits times Irate). Regarding a negated vector that is -1
times a stored vector, any scalar times an eigenvector of a matrix
is still an eigenvector of the matrix, so the magnitude of the
response to the negated vector is equal to the magnitude of the
response to the vector from which it was derived.

Q.6.1.6. For patterns that have been learned only once, the internal input
at time cycle t is equal to the prior activation. When this is added
to the continuing external input, the resulting new activation
increases by estr times the external input. For patterns that have
been learned twice, the internal input is twice the previous activa­
tion value so activations grow much more quickly. This explosive
growth would continue indefinitely except that there is a built in
check that stops processing as soon as the absolute value of the
activation of any unit exceeds 10.0.

Q.6.1. 7. The weight matrix that results from learning these patterns will be
the identity matrix. These weights will produce an internal input
that matches the current pattern of activation for any pattern of
activation. In terms of the weights, this is because the weight
from each unit to itself is 1 and the weight from each unit to
every other unit is O. In terms of the eigenvectors, any vector in
n-dimensional space can be written as the weighted sum of any set
of n orthogonal vectors in that space; such a set of vectors spans
the space. Since the eigenvalue of each of these vectors is 1.0 for
the matrix you have created in this exercise, the vector that
comes out is the same weighted sum of these eigenvectors as the
vector that went in.

Ex. 6.2. The Brain State in the Box

Q.6.2.1. Each of the trained patterns is an eigenvector of the weight matrix
with eigenvalue 2.0, because each pattern was presented to the
network twice during learning. At cycle 1, the external input sets
the activation of each unit to estr, or 0.1 times the external input
to each unit. Since the resulting pattern of activation is just 0.1
times the pattern presented, this pattern of activation is an eigen­
vector, and so, on cycle 2, the internal input pattern will be equal
to 2 times the prior activation, or 0.2 times the external input.
This product, plus 0.1 times the external input, results in an
activation of 0.3 times the external input. On cycle 3, this new

308 CHAPTER 6

activation pattern is again multiplied by 2 by the matrix, so that
now the internal input is 0.6 times the external input; when 0.1
times the external input is added to this, the activation becomes
0.7 times the external input. On the next cycle, the doubling
occurs again, but this time, 0.1 times the external input plus the
internal input is 1.4 times the external input. This would mean
that the activations of the individual elements would go outside
the" box" imposed by the BSB model. The model does not allow
this to happen; it "clips" the activations at + 1.0 or -1.0. The
next cycle generates an even larger internal input (2.0 times the
external input pattern), but this is again clipped; from this point
on, the internal input and activation do not change; the pattern of
activation has reached a corner of the box.

Q.6.2.2. The pattern +-+- has an ndp of 0.5 with pattern a and an
ndp of 0.0 with pattern b. The pattern of activation this produces
on cycle I has ndp of 0.05 with pattern a. Thus, the network
responds to this pattern by producing as its output (that is, by set­
ting the internal input to the units) to (2.0) (0.05)a = O.1a. The
factor of 2.0 is the eigenvalue of a. This internal input, when
added to 0.1 times the external input, produces a pattern of
activation on cycle 2 that has an ndp of 0.15 with pattern a and
still has an ndp of 0.0 with b. This in turn produces an internal
input pattern equal to 0.3a. Again the external input is added,
but already it is quite clear that the pattern of activation is moving
in the direction of a. This process continues until the activations
of the units reach the boundaries of the box. At this point they
are clipped off, and all of the units have activations of equal mag­
nitude and replicate pattern a exactly.

Q.6.2.3. At the end of cycle 1 the activations are simply 0.1 times the
external input. This pattern has ndp of 0.075 with a and of 0.025
with b. This generates an internal input of 0.15a +0.05b. The
patterns agree on units 0, 3, 5, and 6 and disagree on the other
units. Internal inputs to units where they agree have magnitude
0.20 (0.15+ 0.05), whereas internal inputs to units where they
disagree have magnitude 0.10 (0.15 - 0.05). As it happens, the
internal input to unit 7 is -0.10, which cancels the external input
(when scaled by the estr parameter) so that the activation of unit
7 is 0 on this cycle. The activation of unit 6, on the other hand,
is -0.3, because the external input and both learned patterns
agree on the activation of this unit. The resulting pattern of
activation on cycle 2 has an ndp of 0.225 with a but only 0.075
with b. In general, before the clipping threshold is reached, the
pattern of activation will have an ndp of (t - 1)(0.15) + 0.075 with
a but only (0.05) (t - 1) + 0.025 with b; Thus, a will always be

APPENDIX E. ANSWERS TO QUESTIONS IN THE EXERCISES 309

three times stronger than b in the internal input, with the internal
input to unit 6 having twice the magnitude of the internal input to
unit 7. The internal input to 6 will always have the same sign as
the external input to this unit, but the internal input to 7 will
have the opposite sign compared to its external input. On cycle 3
the internal input becomes stronger than estr times the external
input to 7, so the activation of unit 7 changes in sign at this point.
After one more cycle, the activation.of unit 6 reaches the clipping
threshold, while the activation of unit 7 still lags. After an addi­
tional cycle, even unit 7 reaches the clipping threshold. At this
point, all of the units have activations equal to their value in pat­
tern a.

Q.6.2.4. The network "rectifies" the distorted unit from the prototype after
a single pass through the weights, so that by cycle 2, the sign of
every unit in the activation vector matches the prototype value.
However, the magnitude is less than it would be had the proto­
type actually been presented, since the distorted unit opposes the
other units in the computation of the internal input to each unit.
A further factor is that the external input to the distorted unit
opposes its rectification directly. The activations of the nondis­
torted units reflect the first of these two factors, but not the
second, so they show a less marked decrement compared to the
prototype case. In any case, both inputs end up in the same
corner of the box; the network categorizes each distortion by dis­
torting its representation toward the prototype. With regard to the
weights, over the ensemble of distortions, each unit correlates
perfectly with itself and has a correlation of +0.5 or -0.5 with
each other unit. These correlations are reflected directly in the
values of the weights.

Ex. 6.3. The Delta Rule in a Linear Associator

Q.6.3.1. Essentially, what usually happens is that the delta rule finds, for
each unit, the set of other units whose external inputs are per­
fectly correlated (positively or negatively) with its own. These
correlated units eventually get all of the weight; the units whose
activations are not perfectly correlated have no influence on each
other. This would not happen if the external input to one of the
units was not perfectly correlated with any other unit. When
there are perfectly correlated units, the weights coming into each
unit have absolute values that sum to 1.0 asymptotically because
the delta rule is trying to set the internal input to each unit to
match the external input, which is + 1.0 or -1.0. This means that

310 CHAPTER 6

in cases where a unit's external input is perfectly correlated with
the activation of more than one other unit, the correlated units
divide the weight equally among themselves. The weight matrix
obtained with the Hebb rule is similar, but as usual with Hebbian
learning, the weights reflect pairwise correlations only. Thus, the
weight does not gravitate toward the inputs that predict each unit
perfectly nor is there any restriction that the weights coming into
a particular unit sum to 1.0.

Q.6.3.2. The file imposs.pat in the aa directory contains a set that cannot
be learned in an auto-associator. We reproduce these patterns
here:

xua +--++--+
xvb +--++-+­

yub +-+-+--­
yva +-+-+-++

These patterns were set up so that the last unit would not be
predictable from any of the others. The first four units were set
up as one subset with two alternative patterns (+--+) and
(+-+-) called x and y, respectively. The next three units were
set up as a second subset with two alternative patterns (+--) and
(+--) called u and v. The final unit was set up as a single-unit
subpattern with two alternatives (+) and (-) called a and b. The
value of the final subpattern cannot be predicted from either of
the other subpatterns, because x and y each occur with a and b, as
do u and v. It is only the particular conjunction of the first two
subpatterns that can predict the correct activation for the final
unit, but the delta rule must be able to set the internal input to
each unit based on a weighted sum of its inputs.

Q.6.3.3. Two units that predict each other perfectly will develop strong
weights, and if they cannot be predicted by the others, their
incoming weights from all other units will be O. This means that
although the auto-associator may be able to learn a set of training
patterns perfectly, it may not be able to perform pattern comple­
tion accurately if the portion of a known pattern that is used as a
probe contains any member of a mutually predictive (and not oth­
erwise predictable) pool. This tends to limit the circumstances in
which pattern completion will be possible. In fact, if two units
perfectly predict each other, the delta rule will pile all the weight
coming into each on the connection from the other, even if the
activations of these units could be partially predicted by a
weighted sum of activations of other units. A similar problem can
arise even in auto-associators that use hidden units. To avoid this

APPENDIX E. ANSWERS TO QUESTIONS IN THE EXERCISES 311

problem, it is necessary to introduce noise that keeps activations
from being perfectly correlated.

Ex. 6.4. Memory for General and Specific Information

Q.6.4.1. Your weights should look about the same as those in the figure,
although, of course, they will differ in detail because you will
have used a different random sequence of distortions. You
should find that the model responds best to the prototype, and
that, on the average, it responds better to the exemplar that it just
saw than to new random distortions. Thus, over the short term, it
is sensitive to what it has recently seen, but over the longer term,
it extracts the prototype and comes to respond best to it.

Q.6.4.2. When you increase pflip, you increase the variance of the individ­
ual training exemplars from the prototype and from each other,
and this increases the extent to which the model acts as though it
is retaining information about particular exemplars. The discus­
sion of Whittlesea's (1983) experiments in PDP:17 (pp. 199-205)
draws on this aspect of the model's performance. Increasing the
Irate parameter also increases sensitivity to recent exemplars at
the (slight) expense of the prototype. This is used to account for
some aspects of spared learning in amnesia in PDP:25.

Q.6.4.3. You should find that the individual weights in your simulation
tend to be larger than in the figure. The reason is primarily that
the network must rely on the connections internal to the visual
pattern, whereas the weights shown in the figure were obtained
when it was able to rely on the name pattern as well as the visual
pattern.

Q.6.4.4. You should find more adequate completion with ncycles equal to
50. If you round off the obtained activations (so that 0.16 rounds
up to 0.2, for example), you should get results fairly similar to
those shown in Table 1. The model seems to do a good job filling
in what it can but does have one limitation that makes it different
from human performance: In cases where it is probed with an
ambiguous probe, it always fills in a blend of the two responses
that would be appropriate rather than selecting one or the other
response.

Q.6.4.5. At the end of 50 epochs, it appears that learning has not yet quite
finished, and so some of the elements of the retrieved patterns
are occasionally incorrect. In our runs we get the correct results
after 100 training epochs.

-~

312 CHAPTER 6

The network has the most trouble with those properties that
differ between typical instances and specific familiar examples.
We might expect human subjects to have similar problems,
confusing the properties of typical and familiar exemplars. How­
ever, once again it seems likely that humans would eventually
learn to differentiate the specific instance from the prototype
somewhat more fully than we seem to observe here. It is likely
that stochastic auto-associators with hidden units would be neces­
sary to capture these characteristics adequately in a PDP frame­
work.

Ex. 6.5. Clustering the Jets and Sharks

Q.6.5.1. The typical pattern of weights indicates that each Jet is activating
one of the two output units and each Shark is activating the other.
The system usually falls into this pattern because it minimizes the
differences between the patterns within each cluster. On average,
the Jets are more similar to each other than they are to the
Sharks. This similarity is in part because the Jets all have the Jets
feature and the Sharks all have the Sharks feature.

Q.6.5.2. The pattern of weights over the other features represents the dis­
tribution of values for the Jets and the Sharks. Each dimension
gets about 20% of the weight and divides this up so that each
value on the dimension has a weight whose average is propor­
tional to the frequency that this value occurs. The observed
weights will fluctuate a bit since they are adjusted as each pattern
is presented. In the particular case of the Age units, most Jets are
in their 20s and most Sharks are in their 30s, so the 20s connec­
tion gets most of the weight to the unit that responds to the Jets
and the 30s connection gets most of the weight to the unit that
responds to the Sharks.

Q.6.5.3. Many different possible nonoptimal configurations of weights can
be observed. Generally, each one involves one or perhaps two
dimensions. For example, the following weights were produced
on one run:

10 9
5 11 3
586

12 6 1
10 0 9

9 10
982
982
4 9 5
o 19 0

Q.6.5.4.

APPENDIX E. ANSWERS TO QUESTIONS IN THE EXERCISES 313

Here the network has partitioned the patterns in terms of whether
they are Burglars (second feature on last row) or not. From this
we can see that the non-Burglars (who activate the left unit) tend
to be in their 30s and single, whereas the Burglars tend to be in
their 20s or 30s, with LH or HS educations and with about half of
them married. Note that this is a much less optimal partitioning
than the typical one.

Reducing the learning rate makes it easier to find an unusual
set of weights because the learning process is doing gradient de­
scent in the compactness of the partitions, but each step is being
made on the basis of a very small sample (a single pattern).
Learning can be thought of as tending downhill, but with noise so
that it does not always go downhill. When the Irate is higher, that
is like more noise, and the network can escape from local minima
with greater probability. Note that as the weight step gets infini­
tesimally small, each weight step will have very little effect and so
performance will approximate true gradient descent more and
more closely. The nonoptimal states are local minima due to the
initial configuration of the weights. As the weights are reorgan­
ized, it becomes harder and harder to break out of the current
minimum; that is why the pattern of weights eventually gets
locked in.

The network no longer categorizes the groups into Jets and Sharks
because the Jets and Sharks overlap quite a bit and there are
several better ways they might be partitioned into groups. One
example case is shown below:

o 0
21 0 3
12 8 4
14 6 4
7 10 6

o 0
o 21 3
6 11 6
9 12 3
788

Q.6.5.5.

Here the network has used age (20s vs. 30s) as the categorization
feature, dividing up the 40s individuals in terms of their similarity
to the members of the other two age groups. This partition is
quite like the Jets vs. Sharks partition, but it groups Ken, a Shark
with two of the three typical Jet properties (as many as any Jet
has), with most of the Jets, and groups Mike, AI, Doug, and
Ralph, the 30s Jets, with most of the Sharks.

When the gang categorization feature is present (Jets vs. Sharks)
the network tends to construct one cluster consisting of all the
members of one gang, and then tends to divide the other gang
into two subgangs. Because there are more Jets than Sharks, it is
more typical for the Jets to be divided into two groups, since this

314 CHAPTER 6

gives a slightly more even distribution of individuals in each of
the three groups, but this does not always happen. In fact, the
network will occasionally find a group of similar individuals who
are about half Jets and half Sharks, putting the rest of the Sharks
in one group and the rest of the Jets in the other. There is one
sensible pattern that is quite common when there are three output
units and the ajets.pat patterns are used so that the gang feature is
not specified. This is the pattern in which each unit picks up on
the individuals with a different occupation:

o 0
12 9 2
12 10 2
4 12 7
o 24 0

o 0
8 14 1
4 11 8
13 8 2
24 0 0

o 0
5 11 7

10 9 5
19 5 0
1 0 23

This division of the individuals turns out to reveal that there is
some systematicity to the distribution of other features, depen­
dent on the occupation feature. For example, the algorithm dis­
covers that the bookies tend to be the least educated.

Ex. 6.6. Graph Partitioning

Q.6.6.1. In 9 out of 10 runs that we tried with the default value of Irate,
the best solution was found; that is, one unit responded to all pat­
terns involving two units in the left part of the graph, and the
other responded to all patterns involving two units in the right
part of the graph. The single pattern that connects the two parts
of the graph is grabbed by one of the two units. On the one
exceptional run, the network found the following local minimum:

18

7

10

o 0

13

18

32 o

5

6

21 37

·12

16

o

In this state, the two inputs that have the largest number of con­
nections (those that connect the two graphs) form a strong
"bond" -that is, they both activate the same output unit. This
leaves the other output unit to pick up the patterns that do not
activate either of the linking input units. When smaller Irate is
used, this and several other local minima can be found more fre­
quently, for the same reasons as discussed in Q.6.5.3.

APPENDIX E. ANSWERS TO QUESTIONS IN THE EXERCISES 315

CHAPTER 7

Ex. 7.1. Using Context to Identify an Ambiguous Character

Q.7.1.1. The letter unit k begins to get an edge over r at cycle 3, one cycle
after work exceeds threshold, but the effect at this point is in the
third decimal place, since the activation of work is very slight (Jess
than 0.00 at the end of cycle 2. A detectable advantage for k
appears on the screen at the end of cycle 4. The advantage is due
to feedback from work, and it grows larger and larger as work
becomes more and more strongly excited. The parameter that
determines whether the activation of r will decrease as the activa­
tion of k increases is the letter-to-Ietter inhibition parameter
gamma / 1- > I. The response probability for r eventually goes
down because the response-choice probability for a particular
alternative is based on the Luce (I 959) ratio, in which each
alternative's choice probability is equal to its own response
strength divided by the sum of the response strengths of all of the
other alternatives. As the response strength for k goes up, its
contribution to the denominator increases, and therefore the
choice probability for r goes down. The response probabilities
pull apart more slowly because response strengths build up gradu­
ally over time, based on the orate parameter. If this parameter is
set to a larger value than its default value of 0.05, response proba­
bilities shadow activation differences more closely. The asymp­
totic value is unaffected, however (although with a low orate it
takes quite a while to reach asymptote).

Ex. 7.2. Simulations of Basic Forced-Choice Results

Q.7.2.1. For the CA VE display, the activation of v starts at 0 and grows by
about 0.06 or 0.07 on each cycle, slowing down at around cycle 8
and reaching a level of 0.73 on cycle 15. When the mask comes
on in cycle 16, its effect is sudden, wiping out the activation of v

in two cycles. The forced-choice results are based on the
response probabilities. The response probabilities for v and g start
out equal at .03 (actually .038, or 1126), since all letters start out
with an equal chance of being chosen before the onset of the
display. The advantage for v begins to appear immediately, but
builds up more slowly at first because of the low value of orate.

By cycle 12 it is growing quite rapidly, however, and reaches a
peak of 0.60 on cycle 15. It falls off much more gradually than

316 CHAPTER 7

the activation of v, again because of the low value of orate. The
forced-choice accuracy at the end of processing is based on the
response probabilities at the point in processing where the
response probability for the correct alternative is maximal, which
is at cycle 15, just before the onset of the mask. The probability
of choosing v in the forced choice is equal to its response proba­
bility at cycle 15 (.60), plus 0.5 times the probability that neither
v nor g is read out (about .38), which comes to .60+.19=.79.

For the ZXVJ display, the time course of activation of v is very
similar at first, but v rises more slowly after cycle 3, reaching only
0.44 at cycle 15. The response strength for v is correspondingly
lower, and the resulting forced-choice accuracy reflects this.

The ZXVJ display produces no word-level activations because
of letter-to-word inhibition. The letter-to-word inhibition is 0.04
while letter-to-word excitation is 0.07. Given these values, if
ZXVJ had two letters in common with some word, that word
would receive a net excitatory input because two letters in the
display would activate the word by 0.07 times their activation and
two letters would inhibit it by 0.04 times their activation, for a net
input of about 0.06 times the letter-level activation. Since ZXVJ
has at most one letter in common with any word, the set of active
letters produces at best a net inhibitory effect of
0.07 - (3 xO.04) = -0.05 times the letters' activations.

No words other than cave achieve substantial activation when
CA VE is presented because of the strong word-to-word inhibition.
The word-to-word inhibition parameter is set at 0.21. At first all
words with two or more letters in common with CA VE receive net
excitatory input from the letter level, but as the activations of
these words exceed threshold they inhibit each other. The word
unit cave, which receives by far the most bottom-up excitation,
continues to grow in activation, but the others grow very slowly
or not at all. As cave gets more active it eventually comes to
suppress the activation of the others; they cease inhibiting cave,
so its activation grows with little restraint, thereby allowing it to
increase its domination of the pattern of activation at the word
level.

Q.7.2.2. Accuracy for V in MA VE is almost as good as for V in CA VE

because MA VE activates a number of words containing V in the
third letter position. Though none of these words achieve the
level of activation cave achieves when that word is presented, all
of the active words containing V work together, providing feed­
back that reinforces the activation of v in MA VE.

Q.7.2.3. The reason the advantage of have grows larger and larger is that it
exerts more of an inhibitory influence on its neighbors than they

APPENDIX E. ANSWERS TO QUESTIONS IN THE EXERCISES 317

exert on it. The have word unit's initial resting-level advantage
means that it crosses threshold sooner and has a larger output
than other words receiving an equal amount of excitation from

. the letter level. This means that other words see more inhibition
f . from have than have sees from them. In McClelland and

Rumelhart (1981) this is called the "rich get richer effect." (This
effect is similar but not identical to Grossberg's rich get richer
effect described in Chapter 2.)

What happens with move is even more interesting. Here,
though move is one of the most frequent words, the letters that it
has in common with the display are shared with fewer of the
other words that have three letters in common with the display.
The words cave, gave, have, pave, save, and wave all have _ave in
common with the display, while made, make, male, mare, mate,
and maze all have ma_e in common with the display. The word
move is the only word that has m_ve in common with the display,
and no words have mav_ in common with the display. Thus, 7
words (move and the ma e gang) are providing feedback support
to m, 12 words (the _ave-gang and the ma_e gang) are supporting
a, 7 are supporting v (move and the _ave gang), and all 13 are
supporting the final e. The result is that a and e are more
strongly activated at the letter level than m or v. Thus the
members of the _ave gang and the ma_e gang get more bottom-up
activation than move as a result of the differential top-down feed­
back. Word-to-word competition causes move's activation to fall
off as these other words gain.

Q.7.2.4. Examples of these effects can be obtained with almost any non­
word, but they work better for nonwords that have three letters in
common with several words. A nice example of the gang effect
can be seen with RARD, in which rare loses out to the _ard gang.

Ex. 7.3. Subtler Aspects of the Word Superiority Effect

Q.7.3.1. High bigram-frequency pseudowords like TEEL tend to activate
more words than low bigram-frequency pseudowords like HOET,
but for these examples, both kinds tend to activate only words
that have the correct forced-choice alternative; they differ from
the word displayed in some other position. Thus at cycle 15, the
words activated by TEEL are feel, heel, keel, peel, reel, and tell
(teen has a tiny residual activation). The summed activation of
these words is the feedback support for the L in TEEL. The sum
is about 0.64 (0.62 shows in the display due to truncation). With
HOET, though fewer words have three letters in common with it,

318 CHAPTER 7

all end in T, and at the end of 15 cycles, they are the only words
left active, with a summed activation of about 0.66. Thus the
lower bigram-frequency item has, in fact, a bit more support than
the higher bigram-frequency item.

Q.7.3.2. McClelland and Johnston got the results that they did (according
to the interactive activation model) because their method of con­
structing pseudowords caused the targ~t letter to benefit from the
support of words partially activated by the display. As it hap­
pened, both for high and low bigram-frequency words, the
number of "friends" of the target letters (Le., words that had
three letters in common with the display, including the target
letter) was very high and there were virtually no enemies of any
of their low bigram-frequency words. (An "enemy" is a word that
has three letters in common with the display, in which the three
letters do not include the target letter tested in the forced choice).
When an item like HOEM or HOET is tested in the position of
the changed letter, the bias in favor of friends is reversed. Low
bigram-frequency items are particularly susceptible to these
effects, and so if McClelland and Johnston had tested the changed
letter they might have observed a large apparent bigram-frequency
effect.

Q.7.3.3. In the bright-targetjpattern-mask condition, the more highly con­
strained word usually has an advantage at the word level due to
reduced competition. The correct answer always dominates, how­
ever, and the word-level difference makes a smaller difference at
the letter level for two reasons. For one thing, the forced choice
tends to attenuate word-level differences. More interestingly,
words with weaker constraints tend to have more friends as well
as enemies. That is, while there are more words that share three
letters with the display and differ from it in the tested position,
there are also more words that share three letters with the display
and match the display in the tested position (e.g., CAME, CARE,
and CASE in the case of CAKE). These words support the target
letter, thereby counteracting some of the disadvantage these
words would otherwise have because of reduced feedback support
from the target word itself.

Under degraded display conditions, the features extracted are
much more likely to be compatible with words other than the
word shown if the word shown is a low-constraint word than if it
is a high-constraint word. For example, with CAKE, the words
LAKE and CARE are frequently consistent with the features
detected; CAFE and CAPE occasionally are as well. With CLUE,
on the other hand, the only other word that we have ever found
consistent with the display is GLUE, and this occurred only once

APPENDIX E. ANSWERS TO QUESTIONS IN THE EXERCISES 319

in about 20 runs. Note that, when some other word is consistent
with the display, the alternatives that are consistent generally do
not have an equal response probability; rather, the more frequent
alternative tends to dominate. Thus CAKE tends to lose out to
LAKE and CARE, both of which are higher in frequency than
CAKE. These effects tend to greatly increase the advantage of
more constrained words under these visual conditions compared

to bright-target/ pattern-mask conditions.

Ex. 7.4. Further Experiments With the Interactive Activation Model

Q.7.4.1. Both SLNT and SLET produce a facilitation for l relative to JLQX
because both activate words that share three letters with them,
including the letter l. SLNT also activates sent, which does not
support the l; this is why there is slightly more facilitation for the
l in SLET than for the l in SLNT. Over the set of materials used
by Rumelhart and McClelland, there was a tendency for the pro­
nounceable items to show an advantage in the second and third
positions, both in the experimental data and in the simulations.
In the simulations, the effect was due to vowel enemies of the
consonant target letter.

What is critical is that the target letter have more friends than
enemies. For example, if we test SLNT in the third letter posi­
tion, we get very little facilitation because the N has only one
friend. The E in SLET does even worse since it has no friends
among the words of four letters.

Q.7.4.2. The model produces a very large contextual enhancement effect
for words, but the effect is negligible for pseudowords. What
happens with pseudowords is that words that match two or more
letters from the preview of the context become activated by the
context, and they tend to interfere with the later activation of
words that specifically share the target letter with the context.
This effect can be particularly severe if (as is not the case with
_hig) all three letters of the context happen to match some word;
in this case the model produces a negative pseudoword context
enhancement effect; that is, the model does worse on such items
when the context precedes the pseudoword than when it does not.

Q.7.4.3. To produce the context enhancement effect with pseudowords,
the main thing we did was lower the resting activation level for
words (the minimum activation for words had to be reduced to
accommodate this). Lowering the resting level for word units had
the effect of allowing the preview to prime all words consistent

320 CHAPTER 7

with it, without allowing any of them to go above threshold dur­
ing the preview period. This meant that when the target letter
was presented, the words that included this letter would tend to
be the first to exceed threshold-this would then allow the target
letter to suppress its competition. By itself this manipulation was
not quite sufficient; we found we also had to set the threshold for
word-to-word inhibition above 0 so that active words could feed
activation back to the letter level before they began to inhibit each
other. Finally, we also found we needed to reduce the letter-to­
word level inhibition. With these changes, we were able to cap­
ture the pseudoword enhancement effect as well as all the rest of
the findings considered in McClelland and Rumelhart (1981) and
Rumelhart and McClelland (1982). These parameters produce a
rather exaggerated enhancement effect with this particular item,
but over the ensemble of materials used in the pseudoword
enhancement effect experiments reported in Rumelhart and
McClelland, they produced only a slightly oversized enhancement
effect.

Q.7.4.4. To produce the effects that Carr et al. observed, one has to
assume that subjects have control over the letter-to-word inhibi­
tion parameter gamma/ 1-> w. If letter-to-word inhibition is
strong, then words other than the word actually shown are kept
from receiving bottom-up excitation. This would be appropriate if
subjects were expecting only words, since it would tend to reduce
interference at the word level. This might also be appropriate
when expecting only random letter strings, since it would tend to
reduce spurious feedback from partially activated words; alterna­
tively, the letter-to-word inhibition might be set high by default.
In processing pseudowords, however, a lower setting of letter-to­
word inhibition would allow these stimuli to produce partial
activations of words, thereby producing a facilitation effect for
letters in these stimuli. If the letter-to-word inhibition is assumed
to have a value of 0.21 when words or random strings are
expected, but is assumed to be reduced to 0.04 only when pseu­
dowords are expected, the model nicely simulates the Carr et al.
effects.

